Sunday, December 17, 2017

MERRY CHRISTMAS!




   Hard to believe we're already into the final week before Christmas...  Time flies when you're gettin' old!

   In America, we have a near logjam of holidays from late November through early January.  It used to be understood that "Happy Holidays" and "Season's Greetings" were shorthand for "Happy Thanksgiving, Feast of Nicholas, Hanukkah, Christmas Eve/Day, Boxing Day/Feast of Stephen, New year's Eve/Day, and Epiphany!"

   Now when you say "Happy Holidays" and "Season's Greetings", many people think you're doing it to avoid saying "Christmas".   Sad state of affairs the PC police have brought upon us, 'tis.

   So MERRY CHRISTMAS to all, and a prosperous New Year to come!



.

-30-

- - -


.


.


Friday, November 24, 2017

Millwater's FARRIERY: Black Friday / Cyber Monday and Beyond...


   Well, now that we're all turkey'd up and the Christmas season is officially upon us, just a reminder that Millwater's FARRIERY: The Illustrated Dictionary of Horseshoeing and Hoofcare is available from Amazon and other book sellers in paperback, hardcover, and Kindle forms!


   More information about the book available on the Millwater Publishing website.

   Follow our Twitter and Facebook feeds throughout the season for specials and discount codes.  Also check out eBay, where we usually have promotional copies available at discount prices.


.

- - -

- 30 -




Wednesday, November 22, 2017

Happy Thanksgiving!



   Hard to believe the holiday season is already upon us again!

   Folks following Millwater Publishing know that I've been busy with the ongoing project.  At least until events at Prophet's Thumb started demanding so much time and attention.  (Rough start to an already late dairy season.)    Thankful to have got through that rough patch...  And to have made it to the slow-down phase of the season where I'm not spending all night, every night, in the dairy kitchen!


   Also thankful to have a barn full of healthy Quargian (AQHA/BDHCA) youngsters coming up.  Just hope I've still got it in me to make proper mounts of the industrial strength beasties.  Especially the colt.  A yearling now, and already a 16+ hand locomotive.


   Sadly, for a {ahem} middle-aged Sasquatch like me riding Jurassic Park refugees like these critters, the saddle that fit 1970s me and working quarter horses perfectly won't quite get it done.  So I've been distracted with another long-overdue project...













   "He sold his saddle" is cowboy speak for something akin to "He sold his soul."

   Wonder what it means when he builds a new saddle from scratch...

   Anyway...  Here's hoping you all find yourselves with plenty to be thankful for this turkey-day, and may it be the start of a joyous holiday season!


.
 .



Tuesday, August 15, 2017

LND: Dairy. (Part I.)


“The cow is the foster mother of the human race.
 From the time of the ancient Hindoo to this time have the thoughts of men turned
 to this kindly and beneficent creature as one of the chief sustaining forces of the human race”


 – W.D. Hoard


   One essential feature of the classic, self-sufficient homestead that may go unnoticed in the background is the milk cow.  But ol' Bossy is always there, and she is a huge asset. 

   Grass is one of the easiest and most efficient ways to convert solar energy into nutrition...  But human guts can't digest the stuff very well.  A cow can.  And she'll convert it into milk, a near-perfect food source for most living things!  (Don't buy into that 'humans can't digest cow milk'  hooey.  That processed whitewater from the supermarket doesn't come with the essential enzymes for proper digestion like raw milk does!)

   The dairy cow is a fount of sustenance for the whole farm.  Milk, cream, butter, and cheese for her masters.  Clabber for the chickens.  Whey for the pigs or tomatoes...  And let's not forget the by-product in the form of hundreds of pounds of beef.

   The downside is that even a one cow dairy program is a huge commitment and a lot of work.  She's called a "family cow" because you really need a family to divide the chores, as well as to consume all the milk.  One person handling the whole dairy operation is overwhelming, especially when the cow is fresh.



Getting (or Raising) a Cow...

   Theoretically, any cow of reproductive age can be milked.  But countless generations of selective breeding have produced dairy cows so different from beef breeds that they could pass for separate species.  In addition to higher milk production, dairy cows are selected for quieter, more manageable dispositions.

   Everybody gets too clever by half these days with fancy breeds.  You really need look no farther than the traditional family cows, like the Jersey and Guernsey.  The most commonly seen commercial dairy cow in America these days is the Holstein.  An old joke claims that the government wouldn't allow dairymen to water-down their milk, so they bred Holstein cows to do it for them.  (Holsteins are bigger than other dairy breeds, and produce more gallons of milk, but with a lower concentration of milkfat and protein.)

   'Miniature' cows have become trendy, but keep in-mind the inbreeding that was used to scale cattle down.  If a Jersey cow is too intimidating, you might want to consider goats.  (More on those later.)

   You may be able to find a dairy cull for a good price.  Commercial dairy operations dispose of cows when they no longer meet a set output relative to upkeep standard.  Many of these cows are fairly young, and could produce more than enough for doomstead needs for years to come.  But industrial scale milk production is hard animals, and does not impart the kind of human-oriented social imprinting that is desirable for a family cow.  Look well about these for chronic mastitis, poor disposition.

   If buying a 'new' cow, a good argument can be made for starting with a heifer already confirmed well along in her first pregnancy.  That way you know she's fertile, and you don't have to wait too long to start getting a return on your investment.  But these can run you a pretty penny.

   We started with an early weaned Jersey/Guernsey heifer calf because we wanted to make sure our cow had a good upbringing and was completely imprinted on us.  We were acquainted with some folks through LATOC who had a small homestead dairy operation further up in the mountains, and knew they'd handled their calves extensively from birth. 



   Starting with a calf means you're going to have to invest a lot of time and effort and upkeep into the critter before you get the first cup of milk in return.  But a family cow really needs to be part of the family, completely comfortable and trusting of her people.  This isn't just for sentimental reasons.  Commercial dairies have lots of concrete and steel facilities, with sorting chutes, head gates, tilt tables.  They can use injections to get cows to let-down.  And they only expect two or three milking seasons from a cow before she becomes Big Macs...  You probably won't have anything like that.  So you'll need a cow who wants to cooperate with you.  Will let you catch her out of the pasture and lead her in.  Tie her to a post and milk her without restraints.  Will let down with just a little warm-up and sweet talk.  Even stand for artificial insemination procedures without trouble.



   Basically, we raised our little Maudie as if she were a foal.  Grooming, bathing, leading, tying, hoof handling.  She also learned to tether, which is something horses should not do...  Cows are naturally better at being tied with long (like 50') sturdy ropes to solid anchors like fence post bases.  Their leather hides are less likely to get rope burned, and they tend not to panic when they get tangled.  Tethering is a very handy way to let your cow consume grass in areas not fenced for grazing.

   One decision you may have to make when raising your own milk cow is whether to let her keep her horns.  Most dairy breeds do have the genetics for horn growth, although some lines and crosses may be polled (hornless).  Horns can easily be eliminated early in a cows life, prior to the horn buds attach to the skull.  Before around eight weeks of age, they can be cut, burned, or chemically eliminated (with a mild acid somewhat like the Compound W used for warts in humans).  The paste is nearly painless.  Other methods hurt a bit, and should be done with some sort of topical numbing agent and possible sedation.  Get a vet or experienced cattleman to help you the first time.

   Letting the cow keep her horns gives her some defense against coyotes, dogs, and other threats.  They also give you a convenient handle to take hold of her head.  The intimidation factor of just having horns may discourage city folk from messing with your milker...  Heck, half of them seem to think only bulls have horns!



   No decent family milk cow would ever think of goring her own people, but accidents do happen.  And mischievous cows will definitely use their horns as tools to disassemble fences, stalls, and other things.  So it's a judgement call.  We let Maudie keep her horns.  But she's the only one.



Accommodations...

   When we brought Maudie home, we gave her a stall in the horse stables.  This worked just fine while she was a little heifer.  But, as she got bigger, then had to share with her calf, it became a real mess.  Cow manure is near-liquid, and a pregnant or lactating cow will make barrels of urine.  Cows are deceptively heavy, with relatively small, cloven hooves that will grind filth into a pit gravel floor.  And bovines have ZERO sense of hygiene!  They will turn a stall floor into belly-deep septic muck over time, despite your efforts to clean it regularly.

   Her current accommodations are an anchored-down steel tube corral panel enclosure on a reinforced concrete floor with heavy rubber mats and (of all things) an old boat secured keel-up to provide a partial roof.  (Remember, we're in Dixie, where a cow only needs a roof for shade and sometimes freezing rain.)  This is situated in her primary turnout paddock so that, when she has a new calf, she can go out to graze while he's safe inside.  She can come back and feed him through the panel when she sees fit.  (They figure that out pretty quick.)

   We also started out milking Maudie in her stall.  This was a BAD IDEA that got worse as the stall grew ever more foul.  Then I built a Milking Parlor...  Just an 8' x 12' extension on the barn with a gravel floor, rubber mats where the cow stands, a feeder, a low table for equipment, lights, a fan, and power outlets.  This little, dedicated workspace made milking so much faster and easier that I can't believe we ever did it any other way.






THE MILKING SEASON...

   To make milk, a cow has to first produce a calf...

   Heifers usually come into heat for the first time sometime between six and nine months of age.  Then they cycle about every three weeks unless they are pregnant...  This is going to test your patience a bit, as you shouldn't have a heifer bred until she's past fifteen months old.  So you'll have to put up with several rounds of her relentless bellowing, crazy eyes, and jumping on everyone and everything.  The saving grace is that cows are usually in full heat less than two days.

   When she's fifteen months or so, you can get your cow bred either the old fashioned way, putting her out with a bull, or employ the more modern approach of artificial insemination (AI).  The former may be handy if you have a good neighbor with an appropriate bull he'll share.  Keeping your own bull to freshen just one or two milkers is beyond impractical.

   AI means coordinating with your vet or a reproduction tech, who will show-up with a tank of frozen bull semen, packaged in one dose straws.  A dose will be selected, carefully thawed, and inserted into the heifer's uterus.  Well-handled cows in full heat are usually pretty tolerant of the whole process, requiring little restraint and no sedation.  But the person going shoulder-deep into the cow gets to make that call!

   Bulls inclined to produce small-headed, low-birthweight calves are desirable for a heifer's first pregnancy for easy delivery.  Angus bulls are a popular choice, as their calves are easily born and grow rapidly into good beef producers. 

   Breeding to a dairy bull gives you a chance for a relatively valuable full-dairy heifer.  But, if you get a full-dairy bull calf, he'll produce less beef than an Angus cross.  You can use sexed semen to assure a heifer calf, but availability can be a problem, cost is higher, and potency tends to be far lower than whole semen.

   Bovine gestation is usually around 283 days, a bit over 9 months.  Dairy cows tend to go a little shorter.  Cattle are pretty low-maintenance in pregnancy.  Just keep her well-fed (more on that later), with access to clean water, and the usual shade, shelter. 

   Calving is normally a pretty quick affair.  Most cattle come into this world with no assistance.  If you happen to be present when the calf comes, you can reduce some of the stress on cow and calf once the front feet and nose show.  (They should be oriented hooves-down, as though the calf was jumping out and intends to land on his feet... They may also be covered in the birth sack.)   Take a firm hold on the legs, just above the feet, wait for the cow to push, and pull out and slightly downward.  Don't yank.

   If the calf appears in an incorrect orientation, or birth takes more than 45 minutes after the water breaks, get a vet or experienced cattleman's help ASAP.  Don't panic.  Cows are pretty tough.

   A newly born calf usually appears lifeless.  Make sure its mouth and nose are clear, rub on the critter a minute, and it should soon awaken...  Then you have a decision to implement...



Point of Divergence.....

   You've now got a cow with (hopefully) full udders and a newborn calf.  You can let Mamma keep her calf, or you can split them up ASAP.

   Commercial dairies usually do the latter.  Some homesteaders do as well.  Taking the calf to another stall or hutch to be bottle-fed.  The primary advantage to this is preventing the cow from becoming calf-bound.  Although a dairy cow will produce far more milk than her calf needs, some will instinctively hold-up milk for the calf, shorting her people.  She may even dry-off when the calf is weaned, ending the milking season months ahead of schedule.  This maddening problem may be avoided if the cow never bonds with her offspring, but learns to rely on the milker for udder relief.

   Family milk cows are often allowed to keep their calves.  This has the advantage of saving the humans a lot of work.  Instead of having to milk the fresh cow three or four times a day, and bottle feeding part of the milk to the calf, we just let the calf self-serve, and milk the cow twice a day.  The dairyman typically gets a little less milk this way, but there's still usually more than enough for a family.



TO BE CONTINUED.
MUCH MORE DAIRY CHAPTER TO COME!




.


.


Tuesday, July 11, 2017

LND: Water.



   Water is just below air at the top of the list of things you need in order to postpone dying.  Virtually unlimited, uninfected supplies of fresh water are one of the unsung heroes that enabled the big lifespan increase in the Western World through the 20th Century.  So maintaining the flow is a high priority.


The Typical Farm Well Pump...

   The best source of clean water is a well drilled into a reliable aquifer.  The most common set-up for getting the water from the bottom of the well to your spigots is a grid-powered, automatic, submerged pump with pressure tank.  If you acquire rural property with an established home site, this is what will probably already be there.  If you buy raw land, this may be the simplest thing to have installed.

   The well casing is essentially a big (usually around 6" diameter) pipe that goes straight down to into the ground to below the water level.  Near the bottom of the casing, deep under water, is the actual pump.  A cylindrical thing connected to what is essentially a heavy-duty hose and some wires which run back up the casing to the surface.  The upper end of the hose connects to pipe which, in-turn, connects to a 20 to 50 gallon tank and then out to the homestead plumbing. The wires from the pump run to a pressure switch at the tank, which then connects to the household panel electricity.

   When the pressure in the tank is below a set minimum (usually 30 to 40psi), the switch will send electricity to the pump, which will force water up the hose pipe into the bottom of the tank, compressing the air in the tank into a smaller space at the top.  When the pressure reaches a set maximum (usually 50 to 60psi), the switch will stop power to the pump.  The compressed air in the top of the tank acts as a spring, maintaining fairly constant water pressure for the plumbing without the pump needing to switch on every time water is used.

   Wells under 100' may use surface pumps to pull water up, but deeper wells, and the higher flow rate needed for farms, makes the submersible pump more common in most rural areas.





Alternative Power For Standard Well Pump...

   If you've set-up a backup generator for your doomstead (as detailed in another chapter), you're already ahead of the game.  The well pump should be powered along with everything else when your generator is going.  But you may not want to run the generator 24/7.  So be sure to flush your toilets, fill your water jugs, top-up the livestock troughs, and so-forth while the generator is going. 

   A freestanding solar power station is a more long-term (not to mention quieter) solution for running the well pump.  (You may want to read through the Generator chapter for some info on basic electrical stuff.)

   Contrary to what you may have seen on Captain Planet, photo-voltaic solar panels are kinda' wimpy.  The standard circuit feeding my well pump can provide 3,600 watts.  It would take thirty big solar panels to collect that much power.  At high noon. On a clear day.  So you can't just run a typical well pump system directly from solar panels.

   Fortunately, a pump doesn't draw full power constantly.  In fact, most of the time, it doesn't use any.  When it cycles on, it pulls a big surge of electricity for a second or two, then settles down to more moderate wattage until the pressure maxes out and it cycles off again.  While solar panels collect only a relative trickle of energy, they do it for hours on-end on clear days.  That can add-up to enough to supply the big gulps of power needed for the pump, if you have some way to store the accumulated energy.

   We have two 12 volt, 10 amp solar panels connected to four big marine 12v  batteries.  (These are better for extended charging/output cycles than automotive starting batteries, and better for the high-amp starting load from a well pump than pure deep cycle batteries.)  There's a 35 amp-rated charge controller between the panels and batteries, which keeps the batteries from being overcharged by effectively disconnecting the panels when the battery voltage gets above 15v, reconnecting them when it drops below 13v.  During the day, the solar panels act as a trickle charger to top-up the batteries for when the pump needs power, day or night.

   Problem is, the solar panels and batteries produce low voltage, Direct Current.  The well pump runs on 240v Alternating Current.  To rectify this, we use an inverter.  A device which inputs low voltage, high amp, DC electricity and outputs high voltage, low amp, AC electricity.  Once connected to the inverter, the pressure switch controlled well pump works exactly the same as when it's on grid power.



   Naturally, the solar panels have to be out in the open.  Usually oriented to face directly towards the sun at midday in the Spring and Autumn.  It may be worthwhile to mount them in a way that allows you to adjust them (more upright in Winter, at a shallower angle in Summer) to catch maximum sunlight.

   The batteries and charge controller need to be under cover.  The inverter is the most vulnerable component, and needs more protection from the elements.  It is also capable of producing sparks which could ignite gas vented from the batteries.  So the inverter needs to be enclosed separately from them.  We have the batteries under an old camper shell, with the inverter in a large wooden box also under the shell.  A canister of silica gel beads are kept in the box like a gun safe, to reduce moisture condensation on/in the inverter.

   Remember that low-voltage, DC electricity doesn't carry well over distance.  Keep your components reasonably close together, and wires short.  Use the heaviest wire practical for connecting the panels to the charge controller, and controller to the batteries.  Use the thickest automotive battery cables and clamps to connect the batteries to one-another and the inverter.  Our inverter takes 12vDC input, so the entire DC side of the system is wired in parallel.


   We use a modified sine wave 12vDC to 240vAC inverter which is considerably more affordable than pure sine wave inverters in the 5000 watt range, and works just as well for our purpose.  Oddly enough, it has weird sockets designed to accept a lot of different electrical plugs, including standard American 120vAC extension cords.  This could actually be a hazard if someone plugged a 120vAC device into these 240vAC-only sockets.  But, since the inverter is out by the well house, that's not likely to happen, and the use of a common plug came in handy for us.

   After switching off the pump circuit at the main panel (of course), I reworked the well house junction box so that, instead of connecting the underground electrical conduit from the house to the pressure switch, the line from the house connects to a short 'pony tail' ending in a heavy-duty standard type extension cord socket.  The line from the pressure switch connects to a section of heavy extension cord long enough to reach the inverter in its box, and ends in a standard plug.  This enables me to switch pump power from grid to solar simply by unplugging from one and plugging into the other.  There is no 'suicide cable' risk, as the pronged plug is never live when out of a socket, and no chance of backfeeding as the well can only be plugged into one power source at any given time.



Operating Notes:

   Always power-up the inverter first, then connect a load.  In fact, I've found that it's best to leave the inverter on at all times, even when your using grid power, as powering up from cold seems to really tax the electronics.

   Try to do your heavy water use in the middle of the day, so that the batteries will be charged up by the morning sun after the night's drain, and so that the afternoon sunlight can charge the batteries up before the coming night.

   You may need to open up your power system to fresh air in the heat of Summer.  The inverter will shut down if overheated.  Remember to put the lid on your silica canister when the inverter box is open.
 
   Still on my To Do List (yes, after two decades on the doomstead, I still have a long one!) is the addition of a small wind turbine to top-up the batteries during the dark seasons.  It should be possible to simply wire it in like another solar panel, although another charge controller may be needed.

   During the aforementioned extended periods of gloomy weather, I have run a trickle charger to keep the batteries up on occasion.  In a few pinches, I've used jumped cables from an automobile to charge the battery array. 




Off-Grid From the Start...

   If you're starting from scratch, or determined to be fully self-sufficient, you may want to skip the whole grid AC and pressure tank set-up altogether.


   You can't get much more Old School than a hand pumped well.  (Well, you could lower a bucket on a rope, I suppose.)  No electricity involved.  Back down in the Lowcountry, a lot of Old Timers (including my grandfather) insisted on having a pitcher pump backup for their well.

   Of course, hand-pumping water for just household use can be a big chore.  If you need more fore livestock, irrigation, etc., a hand pump isn't going to be sufficient.

   But it's not quite rocket science to build a windmill and have it mechanically drive the pump for you.  You'll see this sort of thing filling stock tanks on big cattle farms across the country. 

   If you set up a windmill-driven pump, and have it push water into a water tower, you can not only have plenty of water even when the wind is calm, but also have gravity-provided water pressure to your plumbing.  (You'll need to make sure the bottom of your water tower is a few feet higher above the ground than your highest shower head!)

   

   A limitation on hand and mechanically-driven wind pumps is that they can't pull up water from very deep wells.  Nothing really beats a submersible, electric pump for that.  But, using the same water tower approach as a windmill, you can forego the battery array and inverter to have solar panels and/or wind turbines power the well pump directly.

   The problem is that low voltage, DC pumps drive water up the pipe slowly and at low pressure.  So they won't work with a typical pressure tank.  But they can tickle-fill a water tower whenever the sun shines or wind blows...  If you have enough panels and/or turbines. 



Artesian wells...

   Some underground water sources are naturally pressurized to the point that you don't need a pump at all.  Just drill a pipe into the aquifer and the water gushes up.  But you're very lucky if that happens, because it requires rather specific geological conditions which are not that widespread.



Other sources...

   Deep wells are your safest, most reliable source of potable water.  Surface water, such as creeks, ponds, springs, collected rain, and condensation are subject to many sources of pollution.  As infrastructure declines, the likelihood of surface water sources being contaminated will get even worse.  

   Filtration, boiling, distillation, UV, and chemical purification of surface water may be useful means to get through rough spots.  But, unless you are part of a group that can do this on a fairly large scale, it won't be enough to maintain a comfortable standard of living long-term.



Tips...

   In the Doomstead Layout chapter, I mentioned that you want the well house near the middle of your barnyard to minimize hose drag.  Even so, you're probably looking at 100' or more hose to reach all the stalls and paddocks.  Don't cheap-out and try to use ordinary, vinyl-shell garden hose.  Not only will it fail often (I mean every few weeks), but it also doesn't patch well due to its layered construction.  Get the heavy, solid rubber hose.  It's more than worth it.



   For the 'way down yonder' troughs and garden sprinklers, it may be a good idea to just leave a section of hose running back from them to within range of your regular hose, so you can just connect to run water out there without having to drag the full length every time.

   Rather than a spray head or other restrictive valve on the hose (which slows down bucket filling), I prefer about a 6' section salvaged from an old hose with replacement fittings on both ends.  Having this on the end of the main hose allows me to crimp the water off a few feet from the outlet as I thread the hose through a stall wall or paddock fence to water the stock, or to allow easy connection to one of the aforementioned extension lines.  The frequent crimping will wear the hose, but just the easily replaceable 6' piece. 


   Weird thing about the solid rubber hose is that it will conduct high voltage electricity.  So you (or your critters) can get zapped running it over an electric fence.  Wrapping about 18" with electric tape just where you need to lay it across the fence will fix this.



Inverters...

   Solar panels can last decades.  Batteries can go several years, and can be rejuvenated if replacements aren't available.  Charge controllers seem fairly tough, and you can get by without them in a pinch if you figure out how to balance panels/turbines, batteries, and power usage.  Inverters are the weak link in standard well pump to alt energy conversion.

   Modern, electronic inverters are simple to use, provide very stable output, and are very efficient.  But moisture, heat, overloads, and various other things can mess them up.  And they aren't easily reparable.  So it's worth investing in a backup or three for the long term. 

   It's also probably a good idea to look into old-fashioned mechanical inverters, dynamotors, and the like.  These are basically some form of DC motor driving an AC generator or alternating switching system into a transformer coil.  Nowhere near as efficient or self-monitoring as modern electronic inverters, but they can give you AC from DC sources, and can be repaired or even built from scratch by a handyman.



.


.


.

- - -

.



Monday, June 12, 2017

LND: Horses. (Part I)





   This may seem strange, coming from the LATOC's Old Horseman, but horses may not figure into many preppers' plans.

   Our grandfathers switched from horses and mules to trucks and tractors for good reason.  Horses require considerable knowledge and skill not only to work well, but just to keep sound and healthy.  Unlike infernal combustion machines, which can be put into the garage and ignored, equines have to be fed and cared for three-hundred and sixty-five days per year, whether you're using them or not.  They need pastures and paddocks with well-maintained fences.  Properly constructed stables.  Hay, feed, hoofcare.  Etc., etc., etc...

   Fuel, replacement parts, and other things needed to keep tractors and automobiles going may someday become inaccessible, making horses the best solution for rural transportation and farm traction again.  But, if all you really need is a light motorcycle for errands, and a rototiller for the kitchen garden, you might be able to scrounge up a few gallons of gasoline and motor oil to keep them going for years to come, even in the face of shortages or rationing.

   On the other hand, if you need to transport people and cargo beyond what you can move with a cycle, or your doomstead operations require substantial pulling power, equines might make sense.  Riding horses are excellent for long-range reconnaissance, being quieter than motorcycles, better off-road than wheeled vehicles, and having a built-in GPS system.  (Horses are great at finding their way back to the feed trough, no matter how lost their riders get.)

   Whether you have a pressing, practical need for them or not, the opportunity to keep horses may be considered one of the benefits of doomsteading.  If you're living out in the boonies anyway, may as well take full advantage and experience the joys of horsemanship, if you are so-inclined.

   If you are one of the few 'steads in a 'neighborhood' with solid workhorses and equipment, you could find yourself in a position to provide valuable services to your community should the petroleum-fed equipment be silenced.  Hobbies sometime become lucrative occupations.

   Horses do require a substantial investment in treasure and/ or personal effort.  The more equestrian knowledge and skill you have, the less coin you'll need to spend.  Many books have been written on husbandry, training, horsemanship, and farriery.  (Some by myself.)  So I'll try to keep it to an overview here...




Speaking the language...

    An intact male, adult (usually over four years old) horse is a stallion.  A juvenile male is a colt.  Stallions are sometimes called studs, especially if they are used for breeding.  Some folks, especially our cousins across the Big Pond, call a breeding farm or program a stud (shortened from stud farm or stud book).

   A castrated male horse is a gelding.  Most colts are gelded, as geldings are generally the preferred gender for riding and work horses.

   An adult female (usually over four years old) horse is a mare.  A juvenile female is a filly.  Mares are very rarely spayed, as the surgery is far more expensive and risky than gelding colts or spaying smaller animals.

   Very young horses of both genders are foals.  Pregnant mares are said to be in foal.  The birth process is called foaling.

   Horse height is usually measured in hands (four inch units) followed by remaining inches.  "15-3" means the horse is fifteen hands and three inches (63" total).  This measurement is made at the withers, the bony protrusion where the top of the neck meets the horse's back.  

   A pony is a small horse.  Usually less than 14-2 hands, though breed and show organization standards vary.  A pony under 9-2 hands may be called a miniature horse.  Ponies and miniature horses are the same species as full-size horses.

   The donkey, also known as an ass or burro (especially smaller specimens), is a separate species in the same genus as the horse.  Donkeys tend to be smaller, slower, less athletic, smarter, surer of foot, more fuel-efficient, and tougher than horses.  The go-to beasts of burden in the Third World, they can be prone to some maladies due to easy living here in Cornucopia.  (Like founder from overeating.)

   A male donkey is a jack.  A female is a jenny.  Large donkeys are called "mammoth jacks" (over 14-2) and "mammoth jennies" (over 14 hands).  The largest are up to 17 hands.

   A mule is the result of a mare being bred to a jack.  Being a hybrid of two distinct species, they are almost always born sterile.  A male is a john, and is normally gelded, since he has no reproductive potential, and all the behavioral challenges of a stallion if left intact.  A female is a molly.  In extremely rare cases, mollies have been fertile, but it's a literal one-in-a-million fluke.

   A hinny is the result of a jenny being bred to a stallion.  Generally smaller and less strong than mules, and harder to successfully produce due to the genetic technicalities of having the female parent with the lower chromosome count, hinnies are somewhat rare.



Horse types....

   There are countless breeds and types of horses on the market today, each with their ardent fans.  Since the focus of this book is doomsteading, I'll be omitting horses bred for show, novelty gaits, and racing.  We're looking for animals who can get enough useful work done to justify their upkeep around a self-supporting farm. 





Quarter Horse.

   The American Quarter Horse got its name for being bred for the equestrian version of drag racing; quarter-mile races from a standing start.  Their explosive acceleration and agility made the breed dominant in cutting, reining, rodeo, gymkhana, and similar competitions.  Handsome in form, calmly alert in disposition, muscular but compact in size, the Quarter Horse became the default ranch horse...  But the primary breed registry, the American Quarter Horse Association has a long history of tossing the breed standard out the window in favor of generating revenue for the organization, so there are horses of such broadly ranging types with AQHA papers now that registration is virtually meaningless.  There is little wonder that, in recent years, "quarter horse" has come to denote any generic riding horse between pony and draft size, including paints and appaloosas.

   Quarter horses are your basic American riding stock.  It's easy to find tack, equipment, and everything else to fit them.  Most are pretty durable and easy keepers.  And they can do a very wide assortment of things well in terms of riding styles and activities.

   Quarter horses can be trained to harness, and many do quite well.  But sudden acceleration and turn-on-a-dime agility are definitely not desirable between cart shafts or in a plow row, and the 'rear wheel drive' conformation of the quarter horse is not ideal for pulling.

  



Morgan.

   The old-school Morgan is like the quarter horse's even more blue-collar cousin.  Not quite as athletic, but strong, compact, rugged, and utilitarian.  Unfortunately, Saddlebreds (among the least practically useful horses for real work) have been a corrupting influence on the Morgan breed in recent decades, making the classic type Morgan harder to find.

   Traditional Morgans are the quintessential, jack-of-all-trades farmstead horses.  Being a little heavier on the forehand, they generally fall just shy of quarter horses for riding applications, but tend to be superior for harness work.  Their compact size makes them easier to manage and fit with tack than draft horses.





Drafts.

   Draft horses are the giants of the horse world.  Commonly a foot taller and a half-ton heavier than the typical quarter horse.  And they're even stronger than they look.  Because the draft breeds were developed with matching hitch teams in-mind, they tend to be very uniform in appearance.  (American Belgians are usually red with blonde manes, blaze faces.  Percherons are usually either black or grey with stars and minimal white leg markings.  Clydesdales and Shires usually have dark body coats with lots of white on the faces and limbs, long 'feather' hair on the legs.) 

   Draft horses are bred to pull heavy stuff.  If one gigantic superhorse isn't enough to move something, they like to work in teams.  Draft horses are usually calm, even stoic. (But don't buy into the 'Gentle Giant' thing too much. They can spook like any horse.  Some know their own strength and get pushy.)  Most are fairly fuel efficient, needing no more feed than quarter horses, and only a bit more hay.  When it comes to pulling deep plows through tough ground, big combines, or freight wagons, draft horses rule.

   Draft horses can be ridden, and doing so has become quite popular lately.  But, honestly, they aren't very good for it.  They're slow, lumbering, and lack endurance.  Their height makes them difficult to mount.  Their size can be problematic all-around.  The horse world is geared for quarter horses.  Harness and tack for full-size draft horses often has to be special ordered.  They may not fit into horse trailers for transport.  They require double-doses of dewormers.  Draft shoeing is widely considered a specialty, and farriers competent to do it properly may be expensive and hard to find .

   In the Deep South, the square-cube law, which dictates that bigger horses have less skin surface per pound of body weight, hits draft horses hard.  (Darn you, Galileo!)  They have considerable trouble coping with the heat and humidity of the Dixie Summer.  In my own experience, top-quality bred drafters have had a distinct inability to bounce-back from infections the gigantic Petri dish that is the southern environment can throw at them.  Perhaps due to inbreeding.  They don't seem to get sick more often than other horses, but they tend to die (despite massive veterinary intervention) when a quarter horse would have recovered.





Haflinger.

   Once upon a time, some Belgian draft horses got so dirty that their people washed them with REALLY hot water, and they shrank somethin' fierce! 

   Okay.  The Haflinger is an old and storied European breed.  But they do look rather like one-third scale Belgians.  Usually large pony to small quarter horse height, around fourteen hands.

   With their modest size, strong build, and tractable nature, Haflingers could fill a farmstead role similar to the classic Morgan.  They are about the least intimidating mounts for inexperienced riders due to their modest stature, sunny look, and friendly disposition. 

   While they are strong enough to carry men, their size does make them more suitable for kids and ladies when it comes to working under saddle. 





Standardbred.

   The Standardbred was developed for harness track racing at the trot or pace.  Those that retire from or don't make it to racing careers are often picked-up by the Amish and other folks looking for good light driving horses.  They are similar in height to quarter horses, but a bit lankier.  Bred for function, they do tend to be a bit plain in form and coloring.  But that may be considered a plus from a doomsteading point of view.  They are generally less high-strung than their Thoroughbred cousins.

   When it comes to driving the buggy or buckboard into town, the Standardbred will get you there faster and easier than any other.  They are bred to trot or pace long distances, and most get basic driving training at an early age.  They are the size of an ordinary riding horse, and many serve well under saddle as well.

   Standardbreds are a bit light for heavy pulling and farm work.  (Cultivators, hay rakes, and the like should not be a problem for them.)  Under saddle, it may take some work to perfect a smooth transition to the canter, as Standardbreds are trained never to canter on the track.  Some Standardbreds are bred and trained to pace rather than trot.  This is fine for driving, but the pace is not a desirable gait under saddle.  Most can be trained out of it.





Draft Cross.

   "Draft cross" covers an awful lot of territory these days.  The ups and downs of the Premarin market have flooded America with assorted draft and part-draft mares and their offspring.  Essentially, big mares whose previous greatest value was the ability to make copious amounts of urine, and the results of them being bred to whatever stud was handy.  Not exactly a recipe for consistent quality.

   On the other hand, some breeders have crossed carefully selected light and draft horses to achieve an intermediate type, physically similar to European Warmbloods.  Our own program bred full-sized, fancy hitch type, pedigreed Belgian and Percheron mares to extremely sound and athletic American Quarter Horse stallions. 

   The better draft cross horses are bigger and stronger than quarter horses, but have better speed, grace, endurance, and hot climate resiliency than full drafters.  The have the mass for fairly heavy pulling and farm work, but don't need to stop and blow too often when pulling the buggy down the road, even at a near Standardbred rate.  They fit well under a big man's saddle, yet you don't quite need a ladder to get onto them.

   While some 'rescue' part-draft horses are surprisingly good specimens, many more are about what you'd expect from such programs, or from breeding Premarin cast-off mares to Billy-Bob's backyard spotted rackin' hoss stud.  Big, intimidating horses originating from situations where training isn't a priority, 'rescued' by well-meaning but not horse-wise people, can be a menace. 

   Most draft cross horses can use large or warmblood sized tack and trailers, and can be serviced by general practice farriers.  But some of the larger ones may require draft specialty equipment and services.




Mules.

   Mules come in all sizes, from miniature to draft.  Their application is generally the same as the corresponding type of horse.  But they tend to be stronger for their size, surer of foot, more durable, and able to stay in good condition on less feed and hay.

   Since mules don't reproduce themselves, quality specimens of working size can be hard to find and sometimes expensive.  Mules also tend to be noticeably more intelligent than the average horse, which may not always be a good thing.   Pretty much all equines can physically overpower their human masters.  We don't need them outsmarting us as well!





Pony.

   Most ponies today are the outgrown and forgotten playthings of children, who are lucky to find a place as pasture mascot or back yard pseudo-dog somewhere.  But that doesn't mean they can't be useful on a doomstead.

   Ponies tend to be proportionately stronger than horses, as well as tougher and more fuel-efficient.  Their small size makes them suitable mounts for children, less overwhelming for inexperienced handlers, and more maneuverable when working in tight spaces, like short crop rows.  Harness and carts are widely available in pony size, and the little guys can pull a considerable load.  Ponies seem to have an extended life expectancy, though this is hard to pin-down since many have been hanging-around in the background so long that nobody remembers exactly how old they are.  Reasonably healthy, young ponies are often very inexpensive, though training is usually required.

   Ponies have a reputation for bad attitude, though this may be due to being handled by ornery children, then abandoned and neglected.  Short legs don't make for speed or grace.  Size does matter, so they are limited when it comes to how much they can carry or pull.  They can be 'easy keepers' to a fault, becoming obese on just grass in some cases.  Founder is a very common problem with ponies.


------------------------------------ End Part One -------------------------------------

   Looks like this will be a long chapter.  So I'll put up the rough draft in parts.


- - -



.


.



Thursday, May 18, 2017

LND: Outhouse.



   The medical / pharmaceutical industry always tries to take the credit, but the real boons to human life expectancy in modern times are taken-for-granted things like indoor plumbing!  Like refrigeration, it's the sort of thing we'd do well to hang onto as long as we can.

Vaccines and wonderdrugs get the credit,
But here's your REAL hero!

   If you have conventional toilets and septic system, you're in business so long as you have water.  (If you're building your doomstead from scratch, spring for a couple levels above what required for your house size in terms of septic tank and drain field size.  Doing so may avoid the need for pumping or professional maintenance for you lifetime!)  Even if you don't have running water, you can flush with a bucket.  Pour a couple gallons into the main bowl, and it'll trigger a flush.  Or you can fill the rear tank and flush with the lever.  Lugging buckets of water in is a healthier and more elegant solution than lugging festering chamber pots out.

   But, if water is too dear in your situation to be used for waste disposal, or you're one of the 'composting toilet' / 'humanure' obsessed hippies, the good old outhouse is the next best thing to indoor plumbing.




   If Family Guy is any indication, most of America has forgotten how a traditional outhouse works.  (Hint: They aren't like modern Porta-Johns.  Tipping one over will not get 'it' everywhere, or even into your raccoon wounds.)

   Basically, an outhouse is a movable shed with a wooden floor and a bench with a hole in it.  A deep hole is dug into the ground away from the house, shallow well, etc., and the removed dirt is preserved in a pile nearby.  The shed is then moved over the hole so that what is dropped through the hole in the bench falls into the hole in the ground below.  When the hole gets close to full, a new hole is dug, the shed is moved to it, and the dirt from the pile is used to fill and mound-over the old hole.  After a year or so, the hole can be re-dug and used again, with the now thoroughly composted / decomposed black soil usable for plant fertilizer.

   The floor and bench should be tightly constructed so that fumes from the pit don't fill the shed.  A lid over the bench hole helps with this as well.  (Modern toilet seats can be used if you're highfalutin.) 

   In addition to toilet paper (or a reasonable alternative), outhouses are generally stocked with a bucket of wood ash or slaked lime and a cup or ladle to dust over the pit contents after each use to reduce acidity, odor, and insect activity.

   Traditional outhouses usually had a base of heavy wood runners to withstand dragging, and an iron ring for attaching the mule's singletree to pull it.

   Somewhere along the line, a crescent moon shape cut through high on the door became the most familiar way to admit the modicum of light needed to do one's business...  Some say this was originally an ancient symbol for the ladies, with men's outhouses having a sun or star shaped cut-out instead.  Others say it's a 20th Century contrivance, probably invented by a cartoonist who'd never seen a real outhouse.  Be that as it may, the moon cut-out is the norm now.

   There is some potential for methane build-up in an outhouse that might be considered before using an ignition source like a candle or lantern in one.  But just opening the door to get in would probably air out the shed sufficiently to prevent serious problems.  Modern LED lights should be even safer.

   A stovepipe drawing vent can be added to prevent fumes from building-up under the floor.  The opening at the top of the pipe needs to be lined with fine mesh wire (like chicken wire overlapped to make the holes half-sized) to keep birds out of the pipe.  The feathered morons love to go down stove pipes, and never figure out how to get back up.




   Come to think of it, there's no reason you couldn't use PVC pipe here instead of steel stove pipe.  Either should work.

.


.

- - -

.